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TECHNICAL PAPER

STAR 48 SOLID ROCKET MOTOR NOZZLE ANALYSIS AND
INSTRUMENTED FIRINGS

INTRODUCTION

Failures and anomalies in several NASA, DOD, and U.S. industrial solid rocket motor programs ,
have identified a need for more knowledge in the areas of nozzle materials, design analyses, manufactur-
ing, and component quality assessment. The George C. Marshall Space Flight Center (MSFC) has been
authorized by the NASA Headquarters to perform research and technology programs to obtain and
provide an expanded and improved nozzle design data base for use by the U.S. solid rocket motor
industry.

This document discusses the analysis and instrumented testing conducted to date. The nozzle
selected for analyses and testing was a Star 48 manufactured by the Morton Thiokol, Elkton Division.
The Star 48 is an upper stage motor with a history of two fright failures on February 3 and 6, 1984, and
a ground failure in December 1980. Initial failures of the nozzle occurred within the first 10 see of
motor firing.

Following the ground test failure, Prototype Development Associates (PDA) completed a thermal/
structural analysis in 1981 [1] for Morton Thiokol which showed a marginally designed exit cone.

Beginning in August 1984, MSFC has performed thermostructural analyses and there have been
two short duration sea-level motor firings designated carbon/carbon technology (CCT)-I and carbon/
carbon technology (CCT)-2. This paper describes the configurations for the two nozzles, the analyses
performed by MSFC, the instrumentation, the analysis and test results, and the conclusion reached from
the analysis and the motor firings. Nozzle instrumentation and motor firings were conducted by Morton
Thiokol/Elkton Division under contract to MSFC.

CONFIGURATION

The STAR 48 motor has a titanium motor case with a nozzle as shown in Figure 1. The nozzle
consists of a three-dimensional (3D) carbon/carbon integral throat exit (ITE) with a tape wrap carbon
phenolic nose cap and a titanium closure that is bolted to the aft bulkhead of the motor case. The
two-dimensional carbon/carbon involute exit cone is threaded to an involute carbon phenolic insulator.
The carbon phenolic insulator is connected to a titanium adapter which is threaded to the titanium
closure. The flight nozzle contains C-34 cement between the exit cone and insulator including the
forward thread of the exit cone and insulator. Also, the carbon/carbon exit cone is pinned to the carbon
phenolic insulator at the connecting threads with four radially-oriented silica pins located 90 deg apart.
These pins are used to prevent rotation or loosening of the exit cone. The chamber pressure loads on the
nose cap and ITE are transmitted through an involute-constructed carbon phenolic "Dixie Cup" to the
titanium closure. The interface gap between the exit cone and dixie cup is filled with zinc chromate
putty. O-rings are used at the interface of the exit cone and insulator forward of the thread at the
forward end of the insulator and titanium closure interface. The STS configuration exit cone is 34.2 in.
long.



The first nozzle firing test (CCT-1) was a baseline configuration with minimum clearance between
the exit cone and insulator (nominal clearance is 0.010 in.) and a maximum amount of C-34 cement in
the gap between the two parts. The CCT-1 nozzle exit cone was cut off to a length of 19.0 in., as shown
in Figure 2. The second nozzle firing test (CCT-2) had a maximum gap and C-34 cement applied only
to the aft 1-1/4 in. of exit cone to insulator interface with 21, 1/2 in. wide voids or vent paths. Also,
the exit cone was cut to a length of 9.5 in. as shown in Figure 2, and a heat shield was added as shown
in Figure 3. The reason for the shorter exit cone was due to an exit cone buckling failure on CCT-1
aft of the insulator caused by sea-level testing. This failure will be addressed later.

ANALYSIS

The most extensive thermal and stress analysis of the nozzle performed prior to the two flight
failures in early February 1984 was by PDA Engineering. This analysis was performed following a ground
test failure designated DM-2 in December 1980. After the two flight failures, PDA Engineering
performed additional thermostructural analysis in support of the failure investigation. Both of these
nozzle analyses excluded the ITE and nose cap, since the loads from these parts are transmitted to the
titanium closure and since they were designed not to interact with the exit cone. The latter analysis
showed high stresses in the exit cone at three locations as shown in Figure 4. The critical time was 3
to 7 sec.

Beginning in July 1984, MSFC obtained a newly developed thermostructural analysis code called
the Champion code. The Champion code was developed for the U.S. Navy. This stress analysis code is
an incremental code which automatically uses the resulting data from one computational time slice as
input to the next time slice. Due to the urgency of obtaining results, a thermostructural analysis was
performed using the PDA engineering two-dimensional (2D) model, material properties, and predicted
temperatures. Analyses were performed for the first 10 sec of motor burn. The stress model contained
1707 nodes and 1585 "higher order" elements.

Several modifications were made to the Champion code while performing analyses for the CCT-1
and CCT-2 configurations. These changes included adding a capability for modeling involutes. This
change allows the user to input material properties in the material directions (warp, fill, and cross-ply),
instead of the global coordinates (radial, hoop, and axial). Also, the stresses are available in the material
directions and the global directions. Another addition to the code was the ability to obtain margins of
safety for stresses and strains in the material directions.

Although no single acceptable failure criteria has been established for carbon/carbon and carbon
phenolic materials, a failure capability was added to the Champion code. This failure criteria is based on
uniaxial strain and it allows the stress at an integration point to decrease to zero when the ultimate strain
is reached in a particular material direction. This failure criteria was chosen for convenience and is not
based on test data. However, this is believed to be a more realistic approach than allowing both the
stresses and strains to continue to increase after the ultimate strain is reached.

A. CCT-1 ThermostructuralAnalysis

A stress analysis was made using the Champion code for the CCT-1 nozzle configuration dis-
cussed earlier and predictions were made for the CCT-1 motor firing conducted in December 1984. The
CCT-1 analysis included motor chamber pressure and temperatures supplied by PDA Engineering. The
analysis revealed negative margins of safety on some elements in the carbon/carbon exit cone. Analysis
results were printed for 1.0, 2.0, 3.0, 5.0, 7.0, and 10.0 see.
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Strain gage locations were chosen which corresponded to node locations in the stress model.
The stress analysis included very stiff interface elements between the exit cone and the exit cone insula-
tor. This analysis did not address the charring of C-34 cement in the interface. Some nodal tempera-
ture discrepancies or anomalies were observed, which were judged not significant in the critical stress
locations. The temperature anomalies resulted from transferring temperatures from the thermal model to
the stress model.

B. CCT-1 BucklingAnalysis

Following the CCT-1 test and an exit cone failure aft of the insulator, a buckling analysis of the
exit cone was performed. Using a nozzle pressure profile as shown in Figure 5, a buckling analysis was
performed which confirmed the buckling failure. This failure was due to flow separation in the nozzle
and the external sea-level pressure. This condition does not exist in flight or during an altitude test and
is not related to the ground test failure or the two flight failures. The buckling analysis was performed
using the SPAR computer code. An equivalent isotropic modulus was calculated using the orthotropic
moduli. This buckling analysis is described in detail in Reference 3.

C. CCT-2ThermostructuralAnalysis

A thermostructural analysis was performed for the CCT-2 nozzle configurations using the same
temperatures as used in the CCT-1 analysis. The analysis took into account the 0.010 gap between
the exit cone and insulator, but it did not consider any bondline pressure. The influence of bondline
pressure was omitted because the CCT-2 configuration contained vent paths to prevent any gas pressure.
The CCT-2 analysis showed lower stresses in the exit cone aft of the thread and some increase in stresses
forward of the threads in certain material directions. Also, the analysis showed that a gap increase

beyond the 0.010 in. would not affect the analysis results for the first 10 sec of motor burn. Strain
predictions were provided for the CCT-2 test for all strain gage locations. Again, negative margins of
safety were calculated for certain material directions. Most negative margins of safety occurred in the
cross-ply direction. Uncertainty in the material properties is largely responsible for the negative margins
of safety. Updated temperatures were extrapolated from the previous thermal analysis, and used in the
stress analysis for the CCT-2 configuration.

INSTRUMENTATION

A. CCT-1 Instrumentation

The instrumented CCT-1 nozzle assembly contained 28 thermocouples on the exit cone, 22 on
the exit cone insulator, and eight on the closure for a total of 58. In addition, there were 12 strain
gages on the exit cone, 38 on the exit cone insulator, and 16 on the closure for a total of 66. There
were eight pressure measurements to monitor the C-34 bondline pressure between the exit cone and the
exit cone insulator. The pressure measurements were made at four circumferential locations and two
axial locations. The instrumentation locations are shown in Figure 6. Some of the strain gages were
uniaxial gages while others were biaxial gages. The strain gages used were EA-06-125-TM-120 and CEA-
06-500UW-120. Strain measurements were taken at four circumferential positions at each of the axial
locations.



B. CCT-2 Instrumentation

The instrumentation plan for CCT-1 was changed for the CCT-2 test. A description of the instru-
mentation is shown in Figure 7 and tabulated in Table 1. The CCT-2 instrumentation plan, in general,
provides for more axial locations with fewer circumferential positions at each axial location. The CCT-2
instrumented nozzle assembly contained 28 thermocouples on the exit cone, 23 on the exit cone insula-
tor, and 8 on the closure for a total fo 59. Additionally, there were 23 strain gages on the exit cone,
38 on the exit cone insulator, and 7 on the closure for a total of 68. There were also 4 pressure
measurements at 2 axial locations for a total of 8. These pressure measurement locations were the same
as those for the CCT-1 nozzle; however, the installation of the CCT-2 nozzle pressure measurements
was improved due to problems with the CCT-1 installation.

TEST RESULTS

These tests provided valuable data for the thermal and structural response characterization of the
nozzle components, and provided new insight to earlier nozzle failures. Both motor tests were con-
figured to provide 10 sec of motor operation with a mass flow of 50 lb per second. Both motor tests
were conducted at sea-level under nonspin and ambient (50° to 70_F) temperature conditions. Also,
both tests included a post-test quench system to minimize the effects of post-fire heat soak through the
heat affected and virgin materials. The quench was very successful on each motor test.

During the CCT-1 test, the exit cone failed at 0.53 sec. This failure was detected by cameras
and several strain measurements. As a result of this failure, some measurements were lost earlier than
expected due to instrumentation leads being exposed to heat.

Test data from CCT-1 and CCT-2 are included in appendixes A and B, respectively. This data
includes pressure, temperature, and strain plots. Predicted temperatures and strains are plotted along
with the measured data.

From the CCT-1 bondline pressure data and post-test hardware evaluation, it was concluded that
the pressures were higher than those measured. Although adhesive was used to isntall the pressure tubes,
it blew out during firing which caused gas leakage. This was verified by post-test hardware inspection.
Improvements in installation of pressure measurements were made for the CCT-2 test, and good pressure
data was obtained through motor test and post-test cooldown. Bondline pressures at the forward loca-
tion for CCT-2 exceeded 400 psi, even with the 21, 1/2 in. wide vents between the exit cone insulator.
No bondline pressure had been included in the nozzle design. This bondline pressure increases the com-
pressive stresses in the exit cone and produces a significant axial force that must be reacted through the
threads in the carbon/carbon exit cone and the carbon phenolic exit cone insulator.

The peak pressure measured at the aft location for the CCT-2 test was below 300 psi. The
difference in the pressure measurements at the forward and aft location is due to the bondline gap
locally closing between the two locations. Also, the pressures were still increasing at the end of motor
burn. The effect of chamber pressure on bondline pressure at the forward location can be seen by a
sudden decrease in bondline pressure at 11.5 sec (i.e., 1.5 sec after shutdown).

Post-test hardware inspection of CCT-1 and CCT-2 showed an aft shift of 0.02 in. in the exit
cone with respect to the exit cone insulator. This exit cone shift had been observed on hardware after
full length test, but it was believed to occur late in motor burn.



As can be seen from the plots, the test temperatures of the exit cone at the E-1 and E-9 locations
were much lower than predicted. The measured axial and hoop strains were quite different from the
predicted strains at the E-1 location. The E-1 hoop strain reversals at 1.0 sec and 2.5 sec and the E-1
axial strain reversal at 2.5 sec are not understood. These reversals could be caused by unknown loads,
the shift in the exit cone or some kind of strain response associated with the carbon/carbon involute
cone. Additional laboratory tests and motor tests are planned to further understand the data and nozzle
behavior.

All the exit cone strain gages were lost, as expected, early due to temperature. A compromise
was made on the strain measurements due to a limited number of data channel, data on key nozzle
components, and the expected time of good data.

No specific strain responses were observed due to the bondline pressure; however, the strain
gages most sensitive to the bondline pressures (1-5, 1-6, and 1-7) were lost shortly after the bondline
pressure began to increase. No insulator (1-2) or aft closure (C-2) strain gage shows a response that can
be attributed to the interface pressure; however, the effect of motor chamber pressure can be seen on
these gages at these locations.

STRAIN GAGE MEASUREMENTS

A. Exit Cone

Almost all strain gages mounted in the hoop direction, regardless of axial locations, exhibit a
similar type of response of strain versus burn time, although not at the same time. Each hoop strain
increases, then decreases, and then increases again. This trend was observed on CCT-1 and CCT-2 tests.
Some of the strain data from CCT-1 was questionable at first due to the aft exit cone failure. After
evaluating the CCT-2 strain data, it was obvious that the CCT-1 strain data was better than originally
believed. It was observed that the E-1 hoop strain was greater at 1.0 sec on CCT-2 than on CCT-1.

B. Exit Cone Insulator

The E-1 axial compressive strains were greater on CCT-2 than on CCT-1. The SI-2 strain gage
showed the effects of chamber pressure. The SI-2 hoop strain showed compressive strain initially with
the thermal loads over coming the chamber pressure loads at about 3.0 sec. Some difference was
observed in the CCT-1 and CCT-2 hoop strains, but there were some variations in the circumferential
locations for each nozzle can be expected regardless of the bondline gap.

C. Closure

The SC-2 axial strains were larger on CCT-1 than those on CCT-2. At 5.0 sec, the C-2 com-
pressive axial strain on CCT-1 was 900 micro-inches per inch while the C-2 compressive axial strain on
CCT-2 was 700 micro-inches per inch. The C-2 hoop strains returned to zero earlier on CCT-1 (8.0 sec)
than on CCT-2 (later than 10.0 sec).
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CONCLUSIONS

The CCT test program has provided significantly more thermal and strain data on the non-
metallic components of a nozzle than has been accumulated in solid rocket motor test to date. The
number of strain measurements on the nonmetallic materials is believed to be an order of magnitude
greater than those on any other nozzle during a motor firing. Until this test program was conducted,
all emphasis was placed on the design, manufacture, and inspection of the carbon/carbon exit cone
(i.e., ply pattern, density, C-scan, and low density indications). These motor test firings confirmed high
interface pressures which had never been considered in the thermostructural analysis. Also, much larger
vent area is needed to eliminate the bondline pressure. Additionally, the aft shift in the exit cone occurs
earlier in burn time than previously expected, and the shift results from plastic deformation of the
carbon phenolic insulator. The shearout of the carbon phenolic insulatir is a credible failure mode not
addressed prior to the CCT test program. The exact time of the aft shift of the exit cone is unknown,
but future tests will try to determine the time. The axial loads on threads are due to the axial com-
ponent of the bondline pressure load, and possibly axial loads being introduced on the forward end of
the exit cone by the ITE or the zinc chromate putty. Other unexpected results of the tests were the
exit cone strain reversals.

Results of these tests and analyses suggest that several simple improvements can be made to
improve the Star 48 nozzle. Some improvements are: (1) put axial grooves in the carbon phenolic exit
cone insulator to vent the bondline pressure, (2) add more radial pins in the exit cone/insulator threads,
(3) improve exit cone ply pattern, and (4) provide additional clearance between the ITE and exit cone.

These tests proved that the nonmetallic components of a nozzle can be instrumented with thermo-
couples and strain gages without compromising the test. Since the calculated minimum margins of safety
occur early in motor operation, short tests are desirable to provide maximum test data to verify analytical
models and margins of safety.

These technology tests and analyses represent a very significant step toward developing test tech-
nology and analytical capability, and understanding the operational structural characteristics and verifying
margins of safety of sofid rocket motor nozzles with carbon/carbon involute exit cones.
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TABLE 1. CCT-2

STA A A1 B B1 C C1 D D1

C-1

C-2 S (H, A) T S (H) T S (H) T S (H) T
C-3 S (H,A) T T T T
E-1 S (H, A) T S (H,A) T S (H, A) T S (H, A) T
E-2 T T
E-3 T T
E--4 T T T T
E-5 T T
E-6 T T
E-7 T T

E-8 T S (H) T S (A) X T
E-9 S (H) S (A) T
E-12 S (H) S (H) S (H) S (H)
E-13 ,q(H) T S (A) T S (H)
E-14 S (H) T S (A) T
E-15 S (A)
I-1 T T

I-2 S (H) T S (H) S (H) T S (H)
I-3 T, AC T T, AC T
I-4 S (H, A) T S (H) T S (A) T T
I-5 S (H, A) T S (H) T S (H) T
I-6 S (H, A) T S (H) S (H) T
I-7 S (H, A) T S (H) S (A) T
I-8 S (H, A) S (H, A) S (H, A) S (H, A)
I-9 S (H, A) S (A)
1-10 S (H, A) S (A)
1-11 T T
1-12 T T
1-14 S (H) S (A)
1-15 S (H) S (A)
PC-1 (500) (500) (500) (500)
PC-2 (500) (500) (500) (500)

T = THERMOCOUPLE, S = STRAIN, (A) = AXIAL, (H) = HOOP.
PC = PRESSURE. (500) = MAX GAUGE RANGE. AC = ACCELEROMETER,
RADIAL EXCITATION
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